3.6.77 \(\int x (a+b x^n+c x^{2 n})^{3/2} \, dx\) [577]

Optimal. Leaf size=149 \[ \frac {a x^2 \sqrt {a+b x^n+c x^{2 n}} F_1\left (\frac {2}{n};-\frac {3}{2},-\frac {3}{2};\frac {2+n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{2 \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}} \]

[Out]

1/2*a*x^2*AppellF1(2/n,-3/2,-3/2,(2+n)/n,-2*c*x^n/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))*(a+b
*x^n+c*x^(2*n))^(1/2)/(1+2*c*x^n/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1+2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {1399, 524} \begin {gather*} \frac {a x^2 \sqrt {a+b x^n+c x^{2 n}} F_1\left (\frac {2}{n};-\frac {3}{2},-\frac {3}{2};\frac {n+2}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{2 \sqrt {\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^n}{\sqrt {b^2-4 a c}+b}+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*(a + b*x^n + c*x^(2*n))^(3/2),x]

[Out]

(a*x^2*Sqrt[a + b*x^n + c*x^(2*n)]*AppellF1[2/n, -3/2, -3/2, (2 + n)/n, (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-
2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(2*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + Sqrt
[b^2 - 4*a*c])])

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1399

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a +
 b*x^n + c*x^(2*n))^FracPart[p]/((1 + 2*c*(x^n/(b + Rt[b^2 - 4*a*c, 2])))^FracPart[p]*(1 + 2*c*(x^n/(b - Rt[b^
2 - 4*a*c, 2])))^FracPart[p])), Int[(d*x)^m*(1 + 2*c*(x^n/(b + Sqrt[b^2 - 4*a*c])))^p*(1 + 2*c*(x^n/(b - Sqrt[
b^2 - 4*a*c])))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rubi steps

\begin {align*} \int x \left (a+b x^n+c x^{2 n}\right )^{3/2} \, dx &=\frac {\left (a \sqrt {a+b x^n+c x^{2 n}}\right ) \int x \left (1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}\right )^{3/2} \left (1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )^{3/2} \, dx}{\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}\\ &=\frac {a x^2 \sqrt {a+b x^n+c x^{2 n}} F_1\left (\frac {2}{n};-\frac {3}{2},-\frac {3}{2};\frac {2+n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{2 \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(520\) vs. \(2(149)=298\).
time = 1.02, size = 520, normalized size = 3.49 \begin {gather*} \frac {x^2 \left (2 (2+n) \left (16 a^2 c \left (1+3 n+2 n^2\right )+x^n \left (b+c x^n\right ) \left (3 b^2 n^2+2 b c \left (8+18 n+7 n^2\right ) x^n+8 c^2 \left (2+3 n+n^2\right ) x^{2 n}\right )+a \left (3 b^2 n^2+2 b c \left (16+42 n+23 n^2\right ) x^n+8 c^2 \left (4+9 n+5 n^2\right ) x^{2 n}\right )\right )-6 a n^2 (2+n) \left (b^2-4 a c (1+n)\right ) \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^n}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {2}{n};\frac {1}{2},\frac {1}{2};\frac {2+n}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{-b+\sqrt {b^2-4 a c}}\right )-3 b n^2 \left (b^2 (4+n)-4 a c (4+3 n)\right ) x^n \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^n}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {2+n}{n};\frac {1}{2},\frac {1}{2};2+\frac {2}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{-b+\sqrt {b^2-4 a c}}\right )\right )}{16 c (1+n) (2+n)^2 (2+3 n) \sqrt {a+x^n \left (b+c x^n\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*(a + b*x^n + c*x^(2*n))^(3/2),x]

[Out]

(x^2*(2*(2 + n)*(16*a^2*c*(1 + 3*n + 2*n^2) + x^n*(b + c*x^n)*(3*b^2*n^2 + 2*b*c*(8 + 18*n + 7*n^2)*x^n + 8*c^
2*(2 + 3*n + n^2)*x^(2*n)) + a*(3*b^2*n^2 + 2*b*c*(16 + 42*n + 23*n^2)*x^n + 8*c^2*(4 + 9*n + 5*n^2)*x^(2*n)))
 - 6*a*n^2*(2 + n)*(b^2 - 4*a*c*(1 + n))*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[
(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[2/n, 1/2, 1/2, (2 + n)/n, (-2*c*x^n)/(b +
Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])] - 3*b*n^2*(b^2*(4 + n) - 4*a*c*(4 + 3*n))*x^n*Sqrt[(b
- Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 -
 4*a*c])]*AppellF1[(2 + n)/n, 1/2, 1/2, 2 + 2/n, (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2
- 4*a*c])]))/(16*c*(1 + n)*(2 + n)^2*(2 + 3*n)*Sqrt[a + x^n*(b + c*x^n)])

________________________________________________________________________________________

Maple [F]
time = 0.00, size = 0, normalized size = 0.00 \[\int x \left (a +b \,x^{n}+c \,x^{2 n}\right )^{\frac {3}{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*x^n+c*x^(2*n))^(3/2),x)

[Out]

int(x*(a+b*x^n+c*x^(2*n))^(3/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*x^n+c*x^(2*n))^(3/2),x, algorithm="maxima")

[Out]

integrate((c*x^(2*n) + b*x^n + a)^(3/2)*x, x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*x^n+c*x^(2*n))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x \left (a + b x^{n} + c x^{2 n}\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*x**n+c*x**(2*n))**(3/2),x)

[Out]

Integral(x*(a + b*x**n + c*x**(2*n))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*x^n+c*x^(2*n))^(3/2),x, algorithm="giac")

[Out]

integrate((c*x^(2*n) + b*x^n + a)^(3/2)*x, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x\,{\left (a+b\,x^n+c\,x^{2\,n}\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*x^n + c*x^(2*n))^(3/2),x)

[Out]

int(x*(a + b*x^n + c*x^(2*n))^(3/2), x)

________________________________________________________________________________________